Skip to content

Instantly share code, notes, and snippets.

marp author title paginate
true
Zack Kite
DDD in Practice
true

DDD in Practice


func readJson[T any](w http.ResponseWriter, r *http.Request) (T, error) {
maxBytes := 1_048_576
r.Body = http.MaxBytesReader(w, r.Body, int64(maxBytes))
dec := json.NewDecoder(r.Body)
dec.DisallowUnknownFields()
var dst T
if err := dec.Decode(&dst); err != nil {
return dst, err
@zckkte
zckkte / ValueObject.cs
Created July 28, 2023 13:46
Value object implemented in C#
using System;
using System.Collections.Generic;
using System.Linq;
namespace FunctionalExtensions
{
[Serializable]
public abstract class ValueObject : IComparable, IComparable<ValueObject>
{
private int? _cachedHashCode;
# export mysql database
mysqldump -u username -p database_name > data-dump.sql
# Check if a sql script is a legit sql dump file
head -n 5 prodbck_anon_reduced.sql | grep dump ; echo $?
# import
mysql -u root -p
@zckkte
zckkte / Console.scala
Created March 14, 2022 11:45
Toy functional effect system
object Console {
def putStrLn(str: => String) = TIO.effect(println(str))
}
@zckkte
zckkte / BusinessResult.php
Created May 27, 2021 09:41
BusinessResult implementation in PHP
<?php
class BusinessResult
{
public const SUCCESS = "success";
public const FAIL = "fail";
private string $result;
function curry(fn) {
return function curriedFn(...args) {
if (fn.length !== args.length) {
return curriedFn.bind(null, ...args);
}
return fn.apply(null, args);
};
}
-- \/\/\/ DO NOT MODIFY THE FOLLOWING LINES \/\/\/
module ReversiAI (State,author,nickname,initial,think) where
import Reversi
import Data.List
import Data.Map (fromList, (!))
import Data.Maybe
-- /\/\/\ DO NOT MODIFY THE PRECEDING LINES /\/\/\
@zckkte
zckkte / pet_cnn_classifier.py
Created August 28, 2019 13:49
Cat vs dog image classifier
import os
import math
import random
import shutil
import numpy as np
import matplotlib.pyplot as plt
from time import time
from functional import seq
from collections import namedtuple
import keras
@zckkte
zckkte / visualise_activation.py
Last active August 12, 2019 20:05
Visualise activation in CNN
from keras.models import Model
layer_outputs = [layer.output for layer in model.layers]
activation_model = Model(inputs=model.input, outputs=layer_outputs)
activations = activation_model.predict(X_train[10].reshape(1,28,28,1))
def display_activation(activations, col_size, row_size, act_index):
activation = activations[act_index]
activation_index=0
fig, ax = plt.subplots(row_size, col_size, figsize=(row_size*2.5,col_size*1.5))