-
-
Save olidb2/6414154 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import numpy as np | |
| import timeit | |
| metric_series_count = 3 | |
| test_list = [2.10723804e+03,1.26780400e+04, 1.47227500e+04, 1.62780752e+04, 1.71822812e+04 , 1.64260996e+04 , 2.72706328e+04 , 1.57876689e+04, 1.47809004e+04 , 1.43575615e+04 , 1.55860273e+04 , 1.55252500e+04, 1.70042930e+04 , 1.54317500e+04 , 2.22643242e+04 , 1.54446250e+04, 1.45285752e+04 , 1.52491279e+04 , 1.42818574e+04 , 1.85883770e+04, 1.90738242e+04 , 2.76426113e+04 , 1.51628740e+04 , 1.66276758e+04, 2.91944414e+04 , 1.79294004e+04 , 1.85493008e+04 , 5.05975156e+04, 5.97016328e+04 , 1.36698350e+04 , 1.75005508e+04 , 1.48950996e+04, 2.98080750e+05 , 1.28499795e+04 , 2.33493750e+04 , 1.87940508e+04, 3.70170000e+04 , 1.99230508e+04 , 1.57387549e+04 , 1.64653398e+04, 1.52441250e+04 , 1.71265371e+04 , 1.45260479e+04 , 2.36466992e+04, 1.49441504e+04 , 1.56413750e+04 , 1.53727500e+04 , 1.65995508e+04, 2.31307363e+04 , 3.10398047e+04 , 2.02409023e+04 , 2.81140957e+04, 2.01719004e+04 , 1.79341504e+04 , 1.94490742e+04 , 1.84646230e+04, 2.68916992e+04 , 1.58801221e+04 , 1.92853906e+05 , 1.24943656e+05, 5.59167500e+04 , 4.97305508e+04 , 4.63533086e+04 , 4.88107266e+04, 4.58746836e+04 , 4.67675117e+04 , 5.54424492e+04 , 5.18530977e+04, 4.12353281e+04 , 4.48636016e+04 , 4.36200273e+04 , 4.78300508e+04, 5.98861484e+04 , 5.65999492e+04 , 5.18126992e+04 , 5.12607188e+04, 5.10735273e+04 , 4.48206250e+04 , 2.13880047e+05 , 8.43175078e+04, 7.89681016e+04 , 8.58591797e+04 , 7.91386094e+04 , 6.74334219e+04, 8.73430000e+04 , 8.30917734e+04 , 6.77104375e+04 , 8.08490469e+04, 8.75585469e+04 , 7.33623516e+04 , 8.43328594e+04 , 9.49262422e+04, 8.92074688e+04 , 7.61907734e+04 , 7.35939062e+04 , 4.94489492e+04, 5.20644414e+04 , 1.40493766e+05 , 7.47076719e+04 , 5.91278008e+04, 7.13965625e+04 , 7.43846484e+04 , 6.03837266e+04 , 7.46186250e+04, 8.40347812e+04 , 6.32518242e+04 , 6.82605156e+04 , 6.76610781e+04, 5.40575352e+04 , 6.80397734e+04 , 6.89431016e+04 , 5.52928984e+04, 6.96947109e+04 , 7.27605781e+04 , 5.70301016e+04 , 6.97338359e+04, 1.91428566e+01 , 8.03999996e+00 , 5.57499981e+00 , 0.00000000e+00, 0.00000000e+00 , 0.00000000e+00 , 0.00000000e+00 , 2.28205132e+00, 0.00000000e+00 , 0.00000000e+00 , 0.00000000e+00 , 1.67500000e+01, 6.53658581e+00 , 0.00000000e+00 , 0.00000000e+00 , 0.00000000e+00, 0.00000000e+00 , 0.00000000e+00 , 2.11904740e+00 , 0.00000000e+00, 2.01250000e+01 , 9.80487919e+00 , 1.03076925e+01 , 1.97850006e+02, 1.54682938e+02 , 8.97500038e+00 , 6.75000000e+00 , 1.31707325e+01, 6.58536625e+00 , 1.12500000e+01 , 2.15499992e+01 , 6.75000000e+00, 2.95121937e+01 , 1.27959194e+01 , 1.35000000e+01 , 6.75000000e+00, 3.26341515e+01 , 3.42000008e+01 , 1.33170738e+01 , 0.00000000e+00, 0.00000000e+00 , 2.28205132e+00 , 1.30731697e+01 , 6.69999981e+00, 3.34999990e+00 , 0.00000000e+00 , 0.00000000e+00 , 0.00000000e+00, 2.11904740e+00 , 0.00000000e+00 , 0.00000000e+00 , 0.00000000e+00, 0.00000000e+00 , 2.01000004e+01 , 3.26829290e+00 , 0.00000000e+00, 0.00000000e+00 , 0.00000000e+00] | |
| test_array = np.array(test_list, dtype=np.float32) | |
| def using_magic(): | |
| return zip(*([iter(test_list)]*(len(test_list) / metric_series_count))) | |
| def using_numpy(): | |
| return np.reshape(test_array, (metric_series_count, -1)) | |
| if __name__=='__main__': | |
| print "Starting benchmark" | |
| print "Magic took: {0}s".format(timeit.timeit("using_magic()", setup="from __main__ import using_magic")) | |
| print "Numpy took: {0}s".format(timeit.timeit("using_numpy()", setup="from __main__ import using_numpy")) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Starting benchmark | |
| Magic took: 7.12010908127s | |
| Numpy took: 2.20317482948s |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # 10x more data | |
| import numpy as np | |
| import timeit | |
| metric_series_count = 3 | |
| test_list = 10 * [2.10723804e+03,1.26780400e+04, 1.47227500e+04, 1.62780752e+04, 1.71822812e+04 , 1.64260996e+04 , 2.72706328e+04 , 1.57876689e+04, 1.47809004e+04 , 1.43575615e+04 , 1.55860273e+04 , 1.55252500e+04, 1.70042930e+04 , 1.54317500e+04 , 2.22643242e+04 , 1.54446250e+04, 1.45285752e+04 , 1.52491279e+04 , 1.42818574e+04 , 1.85883770e+04, 1.90738242e+04 , 2.76426113e+04 , 1.51628740e+04 , 1.66276758e+04, 2.91944414e+04 , 1.79294004e+04 , 1.85493008e+04 , 5.05975156e+04, 5.97016328e+04 , 1.36698350e+04 , 1.75005508e+04 , 1.48950996e+04, 2.98080750e+05 , 1.28499795e+04 , 2.33493750e+04 , 1.87940508e+04, 3.70170000e+04 , 1.99230508e+04 , 1.57387549e+04 , 1.64653398e+04, 1.52441250e+04 , 1.71265371e+04 , 1.45260479e+04 , 2.36466992e+04, 1.49441504e+04 , 1.56413750e+04 , 1.53727500e+04 , 1.65995508e+04, 2.31307363e+04 , 3.10398047e+04 , 2.02409023e+04 , 2.81140957e+04, 2.01719004e+04 , 1.79341504e+04 , 1.94490742e+04 , 1.84646230e+04, 2.68916992e+04 , 1.58801221e+04 , 1.92853906e+05 , 1.24943656e+05, 5.59167500e+04 , 4.97305508e+04 , 4.63533086e+04 , 4.88107266e+04, 4.58746836e+04 , 4.67675117e+04 , 5.54424492e+04 , 5.18530977e+04, 4.12353281e+04 , 4.48636016e+04 , 4.36200273e+04 , 4.78300508e+04, 5.98861484e+04 , 5.65999492e+04 , 5.18126992e+04 , 5.12607188e+04, 5.10735273e+04 , 4.48206250e+04 , 2.13880047e+05 , 8.43175078e+04, 7.89681016e+04 , 8.58591797e+04 , 7.91386094e+04 , 6.74334219e+04, 8.73430000e+04 , 8.30917734e+04 , 6.77104375e+04 , 8.08490469e+04, 8.75585469e+04 , 7.33623516e+04 , 8.43328594e+04 , 9.49262422e+04, 8.92074688e+04 , 7.61907734e+04 , 7.35939062e+04 , 4.94489492e+04, 5.20644414e+04 , 1.40493766e+05 , 7.47076719e+04 , 5.91278008e+04, 7.13965625e+04 , 7.43846484e+04 , 6.03837266e+04 , 7.46186250e+04, 8.40347812e+04 , 6.32518242e+04 , 6.82605156e+04 , 6.76610781e+04, 5.40575352e+04 , 6.80397734e+04 , 6.89431016e+04 , 5.52928984e+04, 6.96947109e+04 , 7.27605781e+04 , 5.70301016e+04 , 6.97338359e+04, 1.91428566e+01 , 8.03999996e+00 , 5.57499981e+00 , 0.00000000e+00, 0.00000000e+00 , 0.00000000e+00 , 0.00000000e+00 , 2.28205132e+00, 0.00000000e+00 , 0.00000000e+00 , 0.00000000e+00 , 1.67500000e+01, 6.53658581e+00 , 0.00000000e+00 , 0.00000000e+00 , 0.00000000e+00, 0.00000000e+00 , 0.00000000e+00 , 2.11904740e+00 , 0.00000000e+00, 2.01250000e+01 , 9.80487919e+00 , 1.03076925e+01 , 1.97850006e+02, 1.54682938e+02 , 8.97500038e+00 , 6.75000000e+00 , 1.31707325e+01, 6.58536625e+00 , 1.12500000e+01 , 2.15499992e+01 , 6.75000000e+00, 2.95121937e+01 , 1.27959194e+01 , 1.35000000e+01 , 6.75000000e+00, 3.26341515e+01 , 3.42000008e+01 , 1.33170738e+01 , 0.00000000e+00, 0.00000000e+00 , 2.28205132e+00 , 1.30731697e+01 , 6.69999981e+00, 3.34999990e+00 , 0.00000000e+00 , 0.00000000e+00 , 0.00000000e+00, 2.11904740e+00 , 0.00000000e+00 , 0.00000000e+00 , 0.00000000e+00, 0.00000000e+00 , 2.01000004e+01 , 3.26829290e+00 , 0.00000000e+00, 0.00000000e+00 , 0.00000000e+00] * 100 | |
| test_array = np.array(test_list, dtype=np.float32) | |
| def using_magic(): | |
| return zip(*([iter(test_list)]*(len(test_list) / metric_series_count))) | |
| def using_numpy(): | |
| return np.reshape(test_array, (metric_series_count, -1)) | |
| if __name__=='__main__': | |
| print "Starting benchmark" | |
| print "Magic took: {0}s".format(timeit.timeit("using_magic()", setup="from __main__ import using_magic")) | |
| print "Numpy took: {0}s".format(timeit.timeit("using_numpy()", setup="from __main__ import using_numpy")) |
Author
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Now with 10x more data. The Magic one didn't complete in the 10 mins or so I waited. Numpy one still takes the same amount of time.